Spring 2016 Math 245 Mini Midterm 1 Solutions

1. Draw a circuit corresponding to $(P \land Q) \lor (P|R)$. Label carefully.

2. Fill in the blanks to prove the following theorem: $((\neg p \lor r) \land (t \to q) \land (q \to p)) \to r$

	proposition	justification
1.	$(\neg p) \lor r$	hypothesis
2.	$t \to q$	hypothesis
3.	$q \rightarrow p$	hypothesis
4.	t	tautology is always true
5.	q	modus ponens on 2,4
6.	p	modus ponens on 3,5
7.	$\therefore r$	disjunctive syllogism on 1,6

- 3. Carefully define each of the following terms:
- a. contradiction A **contradiction** is a (typically compound) proposition that is always true.
- b. vacuously true

A conditional proposition $p \to q$ is **vacuously true** if p is false (regardless of q).

- c. converse The **converse** of conditional proposition $p \to q$ is the conditional proposition $q \to p$.
- d. disjunctive addition The rule of inference **disjunctive addition** allows us to conclude $p \lor q$ from the hypothesis p.
- e. predicate

A **predicate** is a collection of propositions, indexed by one or more variables, each drawn from some domain of discourse.

4. Write and simplify the negation of the proposition:

 $\forall x \in \mathbb{R}$, if x(x+1) > 0 then x > 0 or x < -1.

 $\exists x \in \mathbb{R} \text{ with } x(x+1) > 0 \text{ and } -1 \le x \le 0$

5. Prove that the conditional proposition $p \to q$ is equivalent to its contrapositive. Method 1: $(p \to q) \equiv^1 (q \lor (\neg p)) \equiv^2 ((\neg \neg q) \lor (\neg p)) \equiv^3 ((\neg p) \lor (\neg \neg q)) \equiv^1 ((\neg q) \to (\neg p))$ 1: Theorem on conditionals 2: Theorem on double negations 3: Theorem on disjunctions Method 2: Truth table: $p \downarrow q \downarrow p \to q \downarrow = p \downarrow = q \downarrow (\neg q) \to (\neg p)$

Method 2: Truth table:	p	$ q \rangle$	$p \to q$	$\neg p$	$\neg q$	$ (\neg q) \to (\neg p) $		
	Т	Т	Т	F	F	Т		
	Т	F	F	F	Т	F		
	\mathbf{F}	Т	Т	Т	F	Т		
	\mathbf{F}	F	Т	Т	Т	Т		
The third and sixth columns agree, so the theorem is proved.								