Spring 2016 Math 245 Mini Midterm 1 Solutions

1. Draw a circuit corresponding to $(P \wedge Q) \vee(P \mid R)$. Label carefully.

2. Fill in the blanks to prove the following theorem: $((\neg p \vee r) \wedge(t \rightarrow q) \wedge(q \rightarrow p)) \rightarrow r$

	proposition	justification
1.	$(\neg p) \vee r$	hypothesis
2.	$t \rightarrow q$	hypothesis
3.	$q \rightarrow p$	hypothesis
4.	t	tautology is always true
5.	q	modus ponens on 2,4
6.	p	modus ponens on 3,5
7.	$\therefore r$	disjunctive syllogism on 1,6

3. Carefully define each of the following terms:
a. contradiction

A contradiction is a (typically compound) proposition that is always true.
b. vacuously true

A conditional proposition $p \rightarrow q$ is vacuously true if p is false (regardless of q).
c. converse

The converse of conditional proposition $p \rightarrow q$ is the conditional proposition $q \rightarrow p$.
d. disjunctive addition

The rule of inference disjunctive addition allows us to conclude $p \vee q$ from the hypothesis p.
e. predicate

A predicate is a collection of propositions, indexed by one or more variables, each drawn from some domain of discourse.
4. Write and simplify the negation of the proposition:

$$
\forall x \in \mathbb{R}, \text { if } x(x+1)>0 \text { then } x>0 \text { or } x<-1
$$

$$
\exists x \in \mathbb{R} \text { with } x(x+1)>0 \text { and }-1 \leq x \leq 0
$$

5. Prove that the conditional proposition $p \rightarrow q$ is equivalent to its contrapositive.

Method 1: $(p \rightarrow q) \equiv^{1}(q \vee(\neg p)) \equiv^{2}((\neg \neg q) \vee(\neg p)) \equiv^{3}((\neg p) \vee(\neg \neg q)) \equiv^{1}((\neg q) \rightarrow(\neg p))$
1: Theorem on conditionals 2: Theorem on double negations 3: Theorem on disjunctions
Method 2: Truth table:

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$(\neg q) \rightarrow(\neg p)$
T	T	T	F	F	T
T	F	F	F	T	F
F	T	T	T	F	T
F	F	T	T	T	T

The third and sixth columns agree, so the theorem is proved.

